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Abstract

A simple Jeffcott rotor with both external and internal damping is considered. The rotor is subject to a random

excitation which results in transverse random vibrations even at rotation speeds below the instability threshold. The

random forces in two perpendicular directions are assumed to be uncorrelated white noises which may have different

intensities in general. An analytical expression is derived for peak value of coherence function of responses in these

directions as a function of ratio of rotation speed to its value at the instability threshold. Numerical simulation results are

presented for verification of the corresponding coherence-based method for on-line stability margin evaluation for rotating

shafts.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This brief Note is a sequel to paper [1] where random vibrations of a rotating shaft with internal damping
were studied. In particular, the peak coherence function of the shaft’s transverse displacements in two
perpendicular directions has been obtained as an explicit function of the ratio of the shaft’s rotation speed to
its value at the instability threshold. This relation has been derived under assumption of equal intensities of
white-noise random excitations in the above directions. In the present Note a more general analytical
expression is derived and analyzed for the case of unequal excitation intensities. Furthermore, computer
simulation tests are performed for the suggested coherence-based procedure for on-line stability margin
evaluation for rotating shafts.

Consider a common single-mass/two-degrees-of-freedom rotor consisting of a simply supported weightless
shaft of stiffness K with a disk of mass m at its midspan. This model may also be used for the case of flexible
supports, as long as only axisymmetric problems will be considered here, with the supports’ flexibility regarded
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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as connected in series to that of the shaft (including case of a rigid shaft) [2]. The shaft which rotates with
speed n possesses both external or ‘‘non-rotating’’ damping and internal or ‘‘rotating’’ damping with
corresponding damping factors cn and cr respectively. Let X(t) and Y(t) be mutually perpendicular lateral
displacements of the disk’s centre in the inertial frame with origin at the undeformed shaft’s axis; orientation
of this frame within the disk’s plane is arbitrary as long as gravity forces will be neglected for sufficiently high
rotation speeds. The equations of motion with random excitation terms added to the RHSs may then be
written as [1,2]

€X þ 2k _X þ O2X þ 2bnY ¼ BX ðtÞ; €Y þ 2k _Y þ O2Y � 2bnX ¼ BY ðtÞ; (1)

where O2 ¼ K=m; k ¼ aþ b; a ¼ cn=2m; b ¼ cr=2m. The random forces in the RHSs of Eqs. (1) are
assumed to be stationary zero-mean uncorrelated Gaussian white noises with power spectral densities (PSDs)
s2X=2p and s2Y=2p. The assumption of zero cross-correlation between BX ðtÞ and BY ðtÞ does not restrict
generality since directions X and Y may be chosen so as to correspond to the principal axes of the correlation
matrix.

In the absence of any external excitations Eqs. (1)—with zero RHSs in this case—clearly have a trivial
solution X ðtÞ � 0; Y ðtÞ � 0. This solution is stable if non� and unstable if n4n�, where n� ¼ Oð1þ a=bÞ is the
instability threshold of the shaft; at this rotation speed Eqs. (1) with zero RHS have a neutrally stable periodic
solution with period 2p=O.

Consider the PSDs of the responses X(t), Y(t) for the case of stability of the linear shaft’s model (1) ðnon�Þ.
They can be derived by using the following definition of cross-spectral density of any pair of stationary
random processes ZkðtÞ; ZjðtÞ:

FZkZj
ðoÞ ¼ lim

T!1
ðp=TÞh ~Zkðo;TÞ ~Z

�

j ðo;TÞi; ~Zðo;TÞ ¼
Z T

�T

ZðtÞ expðiotÞdt; i ¼
ffiffiffiffiffiffiffi
�1
p

; (2)

where the star superscript denotes a complex conjugate quantity; this definition covers auto-spectral densities
as well if k ¼ j. Applying to Eqs. (1) the Fourier Transform with finite limits þT and �T as denoted by tilde in
Eq. (2) yields two equivalent real algebraic equations in the frequency domain:

~X ð�o2 þ 2ikoþ O2Þ þ ~Y ð2bnÞ ¼ ~BX ; ~X ð�2bnÞ þ ~Y ð�o2 þ 2ikoþ O2Þ ¼ ~BY . (3)

The auto- and cross-spectral densities of X(t) and Y(t) can now be obtained by solving Eq. (3) for ~X and ~Y
and applying the basic definition (2). The result is

FXX ðoÞ ¼ ð1=2pDD�Þ s2X
�
ðo2 � O2Þ

2
þ 4k2o2

� �
þ 4n2b2s2Y

�
;

FXY ðoÞ ¼ ð2nb=2pDD�Þ ðs2X � s2Y ÞðO
2 � o2Þ

�
þ2iokðs2X þ s2Y Þ

�
;

D ¼ ð�o2 þ 2ikoþ O2Þ
2
þ ð2bnÞ2 and k ¼ aþ b. ð4Þ

(The expression for the PSD of Y(t) is obtained from that of X(t) by swapping excitation intensities
s2X ands2Y .) These response PSDs have their peaks in the immediate vicinity of the rotor’s natural frequency O
which is known to be also the frequency of forward whirl at the instability boundary n�. This is true in
particular for the most interesting case of the lightly damped shaft as long as the shift of the peak is
found to be of the order of the total damping ratio k=O; this shift also diminishes with approaching the
instability threshold speed n� ¼ kO=b ¼ Oð1þ cn=crÞ. Thus, the above solution for the response PSDs can be
used to obtain the coherence function of the responses in two perpendicular directions; its value at o ¼ O is
found to be

g2XY ðOÞ ¼
F2

XY ðOÞ
�� ��

FXX ðOÞFYY ðOÞ
¼

ðn=n�Þ2

1
2 1þ ðn=n�Þ2
� �� �2

� l2 1� ðn=n�Þ2
� �2 ,

where l ¼
1

2

s2X � s2Y
s2X þ s2Y

so that l 2 0;
1

2

� �
. ð5Þ
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This peak value of the coherence function can be measured on line for a shaft rotating with constant speed n.
It is seen to be a monotonously increasing function of n=n� and approaches its potentially maximal value
(unity) when approaching the instability threshold. Thus, relation (5) can be used to estimate the
shaft’s margin with respect to its instability threshold speed by the relevant processing response signals X(t)
and Y(t) measured on-line during operation at a constant rotation speed. The resulting procedure
clearly illustrates the advantage of using the stochastic component of the shaft response. Indeed, it
would be impossible in principle to obtain such an estimate from the shaft’s steady-state (harmonic) response
to unbalance and/or misalignment since the internal damping is not involved in this synchronous
forward-whirl response [2].

The peak value of coherence at any given rotation speed is seen to be smallest if l ¼ 0—that is,
in case of the same intensity of excitations in directions X and Y. This important special case,
for which solution (5) had been obtained earlier in Ref. [1], should be therefore most convenient for
evaluating the stability margin since the peak coherence is found to be most sensitive to variations
in n=n� in this case. In the opposite extreme case l ¼ 1

2
, with the excitation applied only in one direction, the

peak coherence is found to be unity at any rotation speed. The procedure for evaluating the stability
margin would then be impractical in this case because of the permanent ‘‘false alarm’’. Anyway, the relation
(5) demonstrates the potential use of the procedure for different intensities of excitations in directions X and Y.
Whilst the most favourable condition for this use is that of equal intensities ðl ¼ 0Þ, cases of other
values la1

2
can also be handled. This is seen from Fig. 1 illustrating relation (5) for peak coherence as a

function of speed ratio n=n� for several selected values of l; as could be expected all these peak values approach
unity when n=n� ! 1.

Results of direct numerical simulations of the stochastic equations (1) for the case l ¼ 0; O ¼ 1; a ¼ b ¼
0:01 are also presented in Fig. 1 by star symbols. Here the coherence function has been estimated as in
simulated on-line tests—directly from ‘‘measured’’ numerically generated samples of X(t) and Y(t). The
estimates were obtained in MatLab using built-in function ‘‘cohere’’, with a rectangular window providing the
most reasonable numerical results; the total number of points used to estimate the coherence function was
262144. As can be seen from the figure, the accuracy of numerical estimates is good, particularly for larger
values of n=n�.
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Fig. 1. Peak value of the coherence function of the responses X(t) and Y(t) vs. rotation speed ratio n=n�: the analytical solution (5) for

several different values of l (—, l ¼ 0:45; - - - -, l ¼ 0:3; . . . , l ¼ 0:0) and results of processing the numerically generated solution to

stochastic equations (1) for l ¼ 0; O ¼ 1; a ¼ b ¼ 0:01 (*).
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